-"AD-A130 704 DIRECTLY EXECUTED LANGUAGES(U) STANFORD "UNIV CA
COMPUTER SYSTEMS LAB M J FLYNN JUN 83 ARO-18553.4-EL
DAAG29-82-K-0109

UNCLASSIFIED F/G 9/2

o £t
fl == =

= e
li2s s e

MICROCOPY RESOLUTION TEST CHART
STANDARDS 1963 4

NATIONAL BUIRE AU OF

UNCLASSIFIED

SECUKHITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

READ INSTRUCTIONS h
REPORT DOCUMENTATION rAGE BEFORE COMPLETING FOXRM ¥
FT REPORY NUMBER 2. GOVT ACCESSION NO.[3 RECIPIENTY'S CATALOG NUMBER /
. 18553 h-EL S 1YPE OF REPORT & PERIOD COW
_ ITLE fend Subtitle) Annua] Report;
o 19 April 1982-18 April 1983
T~ Directly Executed Languages & PCHFOAMING ORG. REPORT NUMBER
-
(_\0 AUTHORTS) 8 CONTRACY OR GRANT NUMBER(2)

Michael J. Flynn DAAG29-82~K-0109

PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giR.A."OEKLKE::EINTY'NPUREOOJEEF?ST' TASK
o | Computer Systems Laboratory
Department of Llectrical Engineering
t:t Stanford University, Stanford, CA
Q CONTROLLING OFFICE NAME AND ADODRESS 12. REPORT DATE
<L U. S. Army Research 0ffice June 1983
Post Nffice Box 12711 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 7
MONITYTORING AGENCY NAME & ADORESS(I! ditisrent from Controliing Qllice) 15. SECURITY CLASS. (of thie teport)
Unclassified
VSa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. TRBUTION STATEMENT (of this Report)
6 OIS 1 ?_..\atm,——., - ﬁ
Approved for public release; distribution unlimited. LT SN

@%,' CRERE S
Y JUL2 7183

17. DISTRIBUTION STATEMENT (of the edetract entered in Block 20, i dillerent trocm Report) %

A (:}q:’ A

19. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19 KEY WORDS (Contlnue on teveree eide Il necessary and identily Oy 0i0cK manoer)

computer architecture
directly executed languages
computer programming

20 ARSTRACT (Centimwe an reverss olde i recossary myd Identity by block nusmber)

’This work compared computer architectures by measuring the execution of an
identical set of high level language programs. -Comparative studies are difficull
and expensive as they require an environment in which all the architectures can
be analyzed on a common basis, Cimulation has been used, uut the slow speed
makes it prohibitively long to collect a significant sample. Performance
measures, such as the number of instructlions, reflect not only architectural
differences but factors (such as compilers) not related to the architecture. <.

[

DTIE FILE COPY

DD s V873 €oimown oF 1 wov es s omsoLETE

8

UNCLASSIFIED

SECURTY CLASSIFICATION OF THIS PAGF (When liote Rntered)

|

DIRECTLY EXECUTED LANGUAGES

Final Report
Prepared for
Dcpartment of the Army
U.S. Army Rescarch Office
Rescarch Triangle Park, NC

Contract No. DAAG29-82-K-0109

April 19, 1982 - April 18, 1983

by

¥
y

Michael J. Flynn
Computer Systems Laboratory
Department of Electrical Engineering
Stanford University ; .
Stanford, CA 94305 :

"The views and/or findings contained in this report arc those of the authors and should not be construed as an
official Departinent of the Army position, policy, or decision, unless so desighated by other official

decumentation,

Table of Contents

1. Architectural Analysis
2. Directly Executed Languages
3. Concurrent Execution

3.1 Level 0 - Pipelined Exccution

3.2 Level 1 - Transparent Concurrency

3.3 Level 2 - Machine Detectable Concurrency
3.4 Level 3 - Algorithm Detectable Concurrency

4. Scientific Personnel

5. T.R.’s and Publications Sponsored Under Contract

N O wesebaa N =

List of Figures

H
;
i
]
i
{
i
]
i

Figure 3-1: Pipclined Exccution 3
Figure 3-2: ‘The Ultimate Pipeline 4
Figure 3-3: Ratios for Different Levels of Concurrency 5

1. Architectural Analysis

This work compared computer architectures by measuring the exccution of an identical sct of high level
language programs. Comparative studics arc difficult and expensive as they require an environment in which
all the architectures can be analyzed on a common basis. Simulation has been used, but the slow speed makes
it prohibitively long to collect a significant sample. Performance measures, such as the number of
instructions, reflect not only architectural differences but factors (such as compilers) not related to the

architecture.

The instruction strecams of the 1BM S/370, DEC PDP-11, and P-codc machines werc mcasured using a
microprogrammable processor--Emmy. The measurement mechanism is embedded into the interpreter (an
cmulator) for the machine, and has access to all aspects of the instruction exccution. The DEC VAX
instruction strcam was measurcd on a VAX 11/780 using a trace feature in the architecture, A sct of

FORTRAN programs was uscd for measurements, and reflect a scientific work load.

The analysis first studicd the composition of the instruction stream. Total number of instructions exccuted,
shows the VAX architecture to be most cfficient, but measurcs of the activity necessary by the interpreter
indicate that the S/370 representation is fastest to interpret. Memory reference behavior indicated that the
8-bit displacement used by the VAX is very cffective for local referencing, but VAX suffers in referencing
global objects. Measurcments of branch behavior have shown that the PDP-11 and VAX architectures
require 10-15% more branch instruction than an ideal representation of the program would indicate. This

architectural defect results from the short range of cenditional branch instructions.

This work analyzed the interaction between compiler optimization techniques and the instruction strcams that
result from optimization, Six $/370 compilers generated different representations of the test work load, and
produccd the data base for study of high level fanguage behavior and architectural analysis. Optimization,
while reducing the resource demands of a program, does not apply uniformly to all aspects of instruction
exccution. ‘The fixed-point computation and memory reference demands are greatly reduced, but the control
requircments of a program arc largely unaffected. Because the absolute occurrence of control related

instructions is constant, their rclative frequency incecases with optimization.

ot e e . a— . P .

2. Directly Executed Languages

A natural way to make compilation as straightforward as possible is to make the exccution architecture fit the
high-level language. This work centers on a family of exccution architecturces called directly exccuted
languages, or DELs. High-level language statements are closely represented by DEL iustructions. DEL
representations minimize the number of bits needed in the instruction strcam for operand specification,
without resorting to encodings that require knowledge of the frequency of occurrence of individual operands.
A Pascal-to-DEL compiler and a DEL processor emulator are used to mcasurc the number of instructions
required to run five test programs to completion. The number is also measured for the HP 1000F, the IBM
370, Pascal P-code and the DEC Vax. The average of the ratios of the numbers for these to the number for
Adept is 3.46. The number of main memory bytes read for data is 5.42 times that for Adept, and the ratio for
bytes written is 14.73. ‘These results show that it is possible to make an execution architecture suitable for a
high-level language in a way that results in architectural measurcs that may indicate a higher speed of

exccution and a lower cost of implementation than some familiar architectures.

3. Concurrent Execution

The execution time of instruction can be effectively reduced by overlapping the start of the exccution of one
instruction with the end of the cxccution of another. This process of overlapping instruction cxccution is
called pipelining and it is uscd on all "super computers™. An example of an instruction strcam which has been

pipelined is shown in Figure 3-1.

| ¢ | oc| aG | oF | x|

L ¢ | pcl ac | oF | Bx |

| 1r | pclac] ok | Ex |

Lir | bl ac | or | ex |

Figure 3-1: Pipelined Exccution

Extending the concept of pipclining to its ultimate would generate an exccution sequence where all
instructions exccute at the same time. But since simultancous exccution of all instructions would mean that
inputs are fctched at the same time and results arc produced at the same time, simultancous exccution could
only be performed correctly if no instruction in the task required the completion of any other instriction to
perform its function. Since this is only possible in the most trivial of cascs, the correct cxecution of all other
programs can only occur when instructions wait for other instructions to ciccute producing resulis which are
needed for their correct exccution. An example of such an ultimate pipeline is illustrated in Figure 3-2.
Exccuting multiple instructions at a time will be called concurrent exccution of instructions as opposed to
parallel cxccution which usually refers to a single instruction strcam, muliiple data strcam style of

computation,

There arc different degrees to which concurrent execution of instruction streams can take place. Using a
minimal amount of hardware, a small amouat of concurrency can be detected providing a modest increase in
cxccution speed. The amount of concurrency detected in these schemes can be compared to the serial
speedup of traditional machines which have instruction prefetch but little or no pipelining. Introducing more
hardwarc increases the amount of concurrency which can be detected and subsequently the execution speed
of the task. Concurrency such as this can be compared to a highly pipelined machine which allows out of

order exccution, multiple path exploration, and interlcaved memory traffic.

Liwr nelac | ok | x|

Lie | nel ac | Lor | rx |

|ie | pel ac Lor | x|
| | ncl AG]| Lor | Ex |

Figure 3-2: The Ultimate Pipeline

Although the degrees of concurrency detection can actually be thought of as a continuum, four distinct levels
have been defined in our rescarch. These levels are defined so that incrcasing level numbers incrcase the
amount of concurrency detected with a corresponding increase in the amount of dificulty of detection and

subscquently the amount of hardware nceded for implementation. They include:

3.1 Level O - Pipelined Execution

The main feature of Level 0 concurrency detection is that there is no concurrency actually detected at all,

Level 0 concurrency is characterized by the fastest program exccution possible with the single restriction that H

an average maximum of onc Instruction is executed in cach machine cycle.

3.2 Level 1 - Transparent Concurrency

Level 1 concurrency is characterized by a direct examination and exploitation of the concurrency which
existed in the original task. In this level of concurrency, only the concurrency which was explicitly apparent

in the task is detected.

3.3 Level 2 - Machine Detectable Concurrency

Fevel 2 concurrency is marked by taking advantage of all the concurrency which a machine can detect without

resorting to algorithm recoding or code manipulation.

3 3 - - . 3" ——vs o Bre e T m P . - CEERSIPY
AR Mol MR oo B A L T A MY A T B ’

3.4 Level 3 - Algorithm Detectable Concurrency

Level 3 concurrency is characterized by analyzing the job to be done and restructuring it in hardware and
software to produce a representation which will exccute in a minimal amount of time using a minimum
number of steps. More precisely, Level 3 concurrency is all concurrency which can be detected

algorithmically. This detection process can occur at both the hardware and software level.

We have completed a fairly extensive study of the speedup potential at cach of the above levels. One such
studylfound the concurrency available in a sample DEL program, shown in 3-3. Note: fevel 3a is compile

time detection only while level 3b represents both compile and runtime detection.

Level of Concurrency

0 1 2 3a 3b
¢ Dynamic Number :
. 435 435 435 390 390
of Instructions
Machine Cycles
to Exccute Task 435 306 180 121 93

Spcedup 1.00 1.42 242 322 4.19

Figure 3-3: Ratios for DiiTerent 1evels of Concurrency

L] II'('rﬁ»rmnm‘t' Fyaluation of the Exceution Aspects of Computer Architectures, by M. Flynn, I Huck, S, Wakeficld and R. Wedig,
International Workshop on High-Level Tanguage Computer Architecture, I § awderdale, F1, December 1932,

4. Scientific Personnel

Michael J. Flyna, Principal Investigator
Professor, Department of Electrical Engincering
Stanford University

Jerome Huck

Research Assistant

Stanford Univcersity

(Received Ph.D. degree in Electrical Enginering, March 1983)

Chad Mitchell
Research Assistant
Stanford University

Johannes Mulder
Rescarch Assistant
Stanford University

Evan Tick
Rescarch Assistant
Stanford University

Scott Wakeficld

Research Assistant

Stanford University

(Received Ph.D. degree in Electrical Engincering, December 1982)

Robert Wedig

Rescarch Assistant

Stanford University

(Reccived Ph.1). degree in Flectrical Engincering, June 1982)

5. T.R.’s and Publications Sponsorcd Under
Contract

"Detection of Concurrency in Directly Fxecuted Language
Instruction Streams”, by Robert G. Wedig, Ph.D. Thesis, Stanford
University, June 1982. (Also available as Technical Report No. 238,
Computer Systems Laboratory, Stanford University, Stanford, CA.)

"Performance Evaluation of the Execution Aspects of Computer Architectures™,
by M. Flynn, J. Huck, S. Wakefield, and R. Wedig, Proczedings of the
International Workshop on High Level L.anguage Computer Architecture,
December 1-3, 1982, Ft. L auderdale, Fla.

"Studics in Exccution Architectures”, by Scott Wakeficld, Ph.D. thesis,
Stanford University, December 1982. (also available as Technical Report No.
237, Compter Systems Laboratory, Stanford University, Stanford, CA.)

"A Local Variable Storage Mechanisin”, by Scott Wakeficld, COMPCON Proceedings
March 1983, San Francisco, CA.

"Execution Architecture: The DELtran Experiment”, by M. Flynn and 1. Hocevel,
IEEE Transactions on Computers, Vol. C-32, No.2, February 1933
(ISSN 0018-9340), pp. 156-175.

"Comparative Evatuation of Computer Architectures”, by Jerome Huck, Ph.D.
thesis, Stanford University, March 1982.

"Comparative Evaluation of Computer Architectures”, by J. Huck and M. Flynn,
IFIPS Proceedings, Paris, Scptember 1983.

